Detecting Stance in Tweets And Analyzing its Interaction with Sentiment

نویسندگان

  • Parinaz Sobhani
  • Saif Mohammad
  • Svetlana Kiritchenko
چکیده

One may express favor (or disfavor) towards a target by using positive or negative language. Here for the first time we present a dataset of tweets annotated for whether the tweeter is in favor of or against pre-chosen targets, as well as for sentiment. These targets may or may not be referred to in the tweets, and they may or may not be the target of opinion in the tweets. We develop a simple stance detection system that outperforms all 19 teams that participated in a recent shared task competition on the same dataset (SemEval-2016 Task #6). Additionally, access to both stance and sentiment annotations allows us to conduct several experiments to tease out their interactions. We show that while sentiment features are useful for stance classification, they alone are not sufficient. We also show the impacts of various features on detecting stance and sentiment, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Sentiment-Target-Stance Model for Stance Classification in Tweets

Classifying the stance expressed in online microblogging social media is an emerging problem in opinion mining. We propose a probabilistic approach to stance classification in tweets, which models stance, target of stance, and sentiment of tweet, jointly. Instead of simply conjoining the sentiment or target variables as extra variables to the feature space, we use a novel formulation to incorpo...

متن کامل

A Dataset for Detecting Stance in Tweets

We can often detect from a person’s utterances whether he/she is in favor of or against a given target entity (a product, topic, another person, etc.). Here for the first time we present a dataset of tweets annotated for whether the tweeter is in favor of or against pre-chosen targets of interest—their stance. The targets of interest may or may not be referred to in the tweets, and they may or ...

متن کامل

Twitter Stance Detection - A Subjectivity and Sentiment Polarity Inspired Two-Phase Approach

The problem of stance detection from Twitter tweets, has recently gained significant research attention. This paper addresses the problem of detecting the stance of given tweets, with respect to given topics, from user-generated text (tweets). We use the SemEval 2016 stance detection task dataset. The labels comprise of positive, negative and neutral stances, with respect to given topics. We de...

متن کامل

NLDS-UCSC at SemEval-2016 Task 6: A Semi-Supervised Approach to Detecting Stance in Tweets

Stance classification aims to identify, for a particular issue under discussion, whether the speaker or author of a conversational turn has Pro (Favor) or Con (Against) stance on the issue. Detecting stance in tweets is a new task proposed for SemEval-2016 Task6, involving predicting stance for a dataset of tweets on the topics of abortion, atheism, climate change, feminism and Hillary Clinton....

متن کامل

JU_NLP at SemEval-2016 Task 6: Detecting Stance in Tweets using Support Vector Machines

We describe the system submitted to the SemEval-2016 for detecting stance in tweets (Task 6, Subtask A). One of the main goals of stance detection is to automatically determine the stance of a tweet towards a specific target as ‘FAVOR’, ‘AGAINST’, or ‘NONE’. We developed a supervised system using Support Vector Machines to identify the stance by analyzing various lexical and semantic features. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016